Retinal Ganglion Cell Death

نویسنده

  • Yasemin Budak
چکیده

1.1 Topographic and cellular organization of the retina The retina is the thin (0.2 mm) lining of the back of the eye that gathers light focused on it by the cornea and lens. The retina has a complex laminar organization; cells are organized into layers (Fig. 1). These layers are named by reference to the middle of the eyeball; the innermost layers are located nearest the vitreous chamber, whereas the outermost lie adjacent to the retinal pigment epithelium and choroid. The most important layers, progressing from the inner to the outer, are: (1) the inner limiting membrane (formed by astrocytes and the conical end-feet of Müller cells); (2) the nerve fiber layer, composed of the axons of ganglion cells; (3) the ganglion layer, containing the cell bodies of ganglion cells; (4) the inner plexiform layer, composed of synapses formed between bipolar, amacrine, and ganglion cells; (5) the inner nuclear layer, containing the cell bodies and nuclei of horizontal, bipolar, and amacrine cells; (6) the outer plexiform layer, composed of synapses connecting photoreceptor cells from the outer nuclear layer with bipolar and horizontal cells from the inner nuclear layer; (7) the outer nuclear layer, containing the synapses and cell bodies of two classes of photoreceptors, namely the rods and cones; (8) the outer limiting membrane, a junction line between photoreceptor cells and Müller cells; (9) the photoreceptor layer, which contains the light-sensitive outer segments of the photoreceptors; and (10) the retinal pigment epithelium (RPE), which is a monolayer of melanin-containing cells forming part of the blood/retina barrier. Although the RPE is not a component of the neural retina, this layer provides critical metabolic support to photoreceptors and the integrity thereof is fundamental in terms of proper retinal function [Bok, 1993; Krstić, 1997]. Retinal tissue contains both neuronal and non-neuronal elements, which work together to enable vision and to maintain retinal homeostasis Neurons: The retina contains five types of neurons: (1) photoreceptors (cone and rod cells); (2) bipolar cells (of the flat, midget, and rod types); (3) horizontal cells; (4) amacrine cells; and, (5) ganglion cells [Krstić, 1997]. Photoreceptors are photosensitive neurons that absorb photons from the field of view and, using a specific complex biochemical pathway, turn this information into electrical signals via the process termed phototransduction [Sung & Chuang, 2010] to bipolar cells. Horizontal cells connect rods and cones that horizontally convey information within the retina. The horizontal cells receive input from one or more photoreceptors and transmit information to other photoreceptors and to bipolar cells [Poche & Reese, 2009]. Amacrine cells modulate signaling between bipolar and ganglion cells. The amacrine cells receive inputs from one or more bipolar cells and contact ganglion cells that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinal Ganglion Cell Complex in Alzheimer Disease: Comparing Ganglion Cell Complex and Central Macular Thickness in Alzheimer Disease and Healthy Subjects Using Spectral Domain-Optical Coherence Tomography

Introduction: Alzheimer disease (AD) is the most common form of dementia worldwide. The modalities to diagnose AD are generally expensive and limited. Both the central nervous system (CNS) and the retina are derived from the cranial neural crest; therefore, changes in retinal layers may reflect changes in the CNS tissue. Optical coherence tomography (OCT) machine can show delicate retinal layer...

متن کامل

Stem ‍Cells in Glaucoma Management

Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...

متن کامل

Chloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells

Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...

متن کامل

Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study

Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...

متن کامل

Glaucoma: squaring the psychophysics and neurobiology.

Advances in our understanding of the pathophysiology of retinal ganglion cell death in glaucoma are providing important insights into the functional changes occurring in retinal ganglion cells in the early stages of the disease. These exciting new findings may help us develop psychophysical tests to monitor early retinal ganglion cell damage, possibly before neurons are committed to the process...

متن کامل

Degeneration of retinal ganglion cells in diabetic dogs and mice: Relationship to glycemic control and retinal capillary degeneration

PURPOSE The purpose of this study was to investigate (i) the effect of diabetes on retinal ganglion cell death in diabetic dogs and mice, (ii) the effect of prolonged glycemic control on diabetes-induced death of retinal ganglion cells, (iii) whether retinal ganglion cell death in diabetes is associated with degeneration of retinal capillaries, and (iv) the effect of diet on diabetes-induced de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012